This article isn't finished yet...

Graph Partitioning

Bi-partitioning task

# Minmal-cut

# Normalized-cut

Criterion: Normalized-cut [Shi-Malik, '97]

Define: Connectivity between groups relative to the density of each group

ncut(A,B)=cut(A,B)vol(A)+cut(A,B)vol(B)ncut(\mathbf{A},\mathbf{B})=\frac{cut(\mathbf{A},\mathbf{B})}{vol(\mathbf{A})}+\frac{cut(\mathbf{A},\mathbf{B})}{vol(\mathbf{B})}

vol(A)vol(\mathbf{A}) : total weight of the edges with at least one endpoint in A\mathbf{A} :

vol(A)=iAkivol(\mathbf{A})=\sum_{i\in\mathbf{A}}k_i

The purpose of this criterion is to produce more balanced partitions.

Spectral Graph Theory:

Analyze the "spectrum" of matrix(s) representing GG

Spectrum: Eigenvectors xix_i of a graph, ordered by the magnitude(strength) of their corresponding eigenvalues λi\lambda_i :

Λ={λ1,λ2,,λn}λ1λ2λn\Lambda=\{\lambda_1,\lambda_2,\cdots,\lambda_n\}\\ \lambda_1\leq\lambda_2\leq\cdots\leq\lambda_n

dd-regular : the degree of each vertex in the graph is dd

If GG is not connected, for example, GG has 2 components, each dd-regular.

每一个特征向量表现了图的划分方式

What are some eigenvectors?

# Spectral Partitioning Algorithm

# 算法流程

# Pre-processing

根据图构建拉普拉斯矩阵 LL

# Decomposition

* 分解

LL 的第 2 小的特征值 λ1\lambda_1 (λ0=0\lambda_0=0) 和特征向量 q1\vec{q_1}

# Grouping

nn 维向量 q1\vec{q_1}nn 个参数对应到 nn 个顶点,可以画图,将参数作为纵坐标,顶点标号作为横坐标,结合图像进行分组 (grouping)